tRNA modification is a complex field regarding the fact that over 100 different kinds of modifications have been discovered and their diverse roles in maintaining tRNA structure rigidity and ensuring the translation fidelity during decoding in ribosome. We are interested in the Elongator complex-mediated cm5 modification on the uridine 34 at wobble position of tRNA anticodon loop. The lack of this modification disables further modifications, such as mcm5, ncm5, mcm5s2, and this has been correlated to pleiotropic phenotypes in cellular level as well as in human diseases, including cancers, neurodegenerative diseases and intellectual disabilities. The Elongator complex is highly conserved and it is consist of 2 copies of 6 subunits (Elp1-6). The integrity of the complex is tightly connected to its function. We recently reported the EM structure of the apo complex as well as the crystal structure of the catalytic subunit (Elp3). With biophysical and biochemical analyses, we could explain how this catalytic subunit interacts with its tRNA substrate as well as how other subunits contribute to its proper function.

For more information, please check out these articles and reviews!

Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi

tRNA Modification by Elongator Protein 3 (Elp3)

Structural asymmetry in the eukaryotic Elongator complex

Elongator mutation in mice induces neurodegeneration and ataxia-like behavior